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We study fully three-dimensional droplets that slide down an incline by employing

a thin-film equation that accounts for capillarity, wettability, and a lateral driving

force in small-gradient (or long-wave) approximation. In particular, we focus on

qualitative changes in the morphology and behavior of stationary sliding drops. We

employ the inclination angle of the substrate as control parameter and use contin-

uation techniques to analyze for several fixed droplet sizes the bifurcation diagram

of stationary droplets, their linear stability, and relevant eigenmodes. The obtained

predictions on existence ranges and instabilities are tested via direct numerical sim-

ulations that are also used to investigate a branch of time-periodic behavior (corre-

sponding to repeated breakup-coalescence cycles, where the breakup is also denoted

as pearling) which emerges at a global instability, the related hysteresis in behavior,

and a period-doubling cascade. The non trivial oscillatory behavior close to a Hopf

bifurcation of drops with a finite-length tail is also studied. Finally, it is shown that

the main features of the bifurcation diagram follow scaling laws over several decades

of the droplet size.
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I. INTRODUCTION

It is known from many experiments and everyday experience that drops on a smooth

homogeneous solid substrate slide along the substrate when lateral driving forces are applied.

For heterogeneous substrates the driving force first needs to overcome pinning influences

of the heterogeneities. Physical systems where individual or many sliding drops can be

observed are, e.g., rain drops on a train window driven by the shear flow of the outside

airstream, drops sliding or rolling down an incline due to gravitational force [1–3] or drops

moving outwards on a spinning disk due to the centrifugal force. The motion of droplets

may also be induced by chemical or thermal gradients along the substrate [4–6]. In all

these settings, control parameters, such as, droplet volume, strength of the driving force,

material properties of the liquid (viscosity, surface tension) and interaction properties of the

combination liquid-substrate (equilibrium contact angle) determine the velocity and shape

of the moving droplets.

Here, we mainly focus on sliding droplets of partially wetting liquids on an incline, i.e.,

droplets that form at equilibrium finite contact angles with the substrate and slide down

under the influence of gravity. Both, experimental [3, 7–9] and theoretical [10–18] stud-

ies, analyzed the dynamic behavior and revealed interesting morphological changes with

increasing driving force and/or droplet volume. Reference [3] employs small-contact-angle

silicon oil droplets on an inclined fluoro-polymer coated substrate and describes a sequence

of transitions that droplets of fixed volume undergo with increasing substrate inclination

(see Fig. 1 of Ref. [3]): At small inclinations the droplets slide with constant speed and a

constant oval-like shape of their base with a small front-back asymmetry (while at zero in-

clination they are shallow spherical caps). With increasing inclination angle the asymmetry

between front and back increases, as does the droplet velocity. The front still resembles

a circular arc but the back becomes increasingly pointed and develops a cusp at a critical

capillary number (or non-dimensional droplet speed). Beyond the corresponding substrate

inclination an instability occurs, where the sliding drop emits smaller satellite droplets at

its back. This effect is also denoted as pearling [3], a notion we also adopt here. In parallel,

the shape of the unstable droplet develops an elongated protrusion at its back. The emitted

droplets can be of identical size or follow a rich variety of dynamical periodic patterns. In

this context, Ref. [3] mentions a cascade of bifurcations that involve frequency divisions.
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It is found that the dependence of the sliding speed on inclination is nearly linear with a

change of the corresponding slope at the onset of pearling. Power law dependencies on vol-

ume are also studied. Similarly, Ref. [7] derives and experimentally verifies for small droplet

speeds (assumption that the droplet nearly remains a spherical cap) a power law that also

includes dependencies on other experimental parameters. The limit of nearly non-wetting

drops rolling down an incline is investigated in Refs. [2, 19].

It is important to mention that the experiments in Ref. [3] are actually not performed

with individual sliding drops but with a continuous sequence of identical drops that are

placed at a defined constant time interval at the top of the inclined plate. This does not

affect the behavior below the threshold for the pearling instability. However, it implies

that beyond the threshold one has pearling events where satellite drops split off the main

drop and also coalescence events where main drops absorb satellite droplets left behind by

the preceding main drop. This allows one to consider the pearling process together with

coalescence events as a periodic process either in the fixed laboratory frame or in a frame

moving with the main drops. This observation will below be used where we employ a

long-wave model to analyze the morphological changes of the droplet shape and also the

pearling-coalescence cycle. Also note that a similar change in droplet morphology (up to

the appearance of a cusp) had earlier been observed for Marangoni-contracted water drops

sliding down inclined hydrophilic substrates [1].

To model and simulate the sliding droplets, different approaches might be followed: One

may employ the fully nonlinear Navier-Stokes equations describing the evolution of the full

three-dimensional velocity field [20]. In most cases, describing slowly sliding drops, the

linearized small-Reynolds-number form – the Stokes equation – may be used [21]. Both

approaches have to be complemented with appropriate boundary conditions at the solid-

liquid and the liquid-air interface. Alternatively, one may combine the bulk equations with an

additional phase-field dynamics, thereby modeling the liquid-air interface as diffuse [22, 23].

Usually, these approaches involve a rather high computational cost, in particular, if three-

dimensional drops are considered. Other methods include dissipative particle dynamics [24]

and lattice-Boltzmann methods [25].

Alternatively, one may employ an asymptotic model derived from the Navier-Stokes and

continuity equations and boundary conditions for free surface flows for which all typical

length-scales parallel to the substrate are large as compared to the film height, i.e., for
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droplets with small contact angles and surface slopes. This small-gradient or long-wave

approximation results for three-dimensional drops in a highly nonlinear evolution equation

for the film thickness profile h(r, t) as a function of the two coordinates r = (x, y) along the

planar substrate [26, 27]. In the present case the resulting equation accounts for capillarity

through a Laplace pressure and for wettability through a Derjaguin (or disjoining) pressure

[28, 29], that combines two antagonistic power laws [30, 31]. When adding the lateral driving

force due to gravity, they serve to study droplets sliding down an inclined homogeneous

substrate. Such long-wave models with various forms of Derjaguin pressure were already

used to thoroughly analyze morphological transitions of stationary sliding two-dimensional

drops (2d), i.e., with one-dimensional profiles h(x, t) [11, 12]; and for a few time simulations

of three-dimensional droplets (3d) that show the pearling instability [12, 16, 32] or states

close to pearling [33]. Such models are also employed to study the combined spreading and

sliding of perfectly wetting drops [26, 34].

Note that we neglect any roughness of the substrate beneath the sliding droplets. There-

fore, any contact angle hysteresis known from experiments is excluded from the dynamics

that we observe, and there is no finite onset inclination angle at which the droplets start to

move. The related depinning behavior is observed with similar long-wave models where mod-

ulations of the Derjaguin pressure represent regular arrays of wettability defects in Refs. [35]

(2d) and [36, 37] (3d). Long-wave equations are also employed to study droplet spreading

over random topographical substrates [38]. The influence of regular and random substrate

modulations on the onset of droplet sliding is also studied with lattice-Boltzmann methods

in Refs. [39] and [25], respectively. Here, we always assume an ideally smooth substrate as

can, e.g., be realized through atomically flat single crystal surfaces or through liquid-infused

substrates.

The present work employs such an asymptotic long-wave model to investigate the mor-

phological changes of fully three-dimensional sliding drops as observed in Ref. [3]. This is

done employing pde2path, a continuation and bifurcation package for elliptic systems of

partial differential equations (PDEs) [40, 41]. In particular, we study the behavior of sliding

droplets at several fixed drop volumes as the inclination angle of the substrate is changed

that represents the strength of the driving force. Our analysis shows that a family of sta-

tionary sliding droplet solutions exists that undergoes steady and oscillatory bifurcations.

These bifurcations are related to morphology changes as, e.g., the development of protru-
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sions at the droplet back (related to a pair of saddle-node bifurcations) and the emergence

of satellite droplets in a pearling instability that technically is a global (homoclinic) bifur-

cation. Beside the bifurcation diagram of stationary droplets we obtain their linear stability

and the relevant eigenmodes. We obtain predictions on existence ranges and instabilities

that are tested via direct numerical simulations that are also used to investigate the branch

of time-periodic behavior (corresponding to pearling-coalescence cycles) which emerges at

the global instability, the related hysteresis in behavior, and a period-doubling cascade that

occurs when further increasing the inclination. The non trivial oscillatory behavior close to

a Hopf bifurcation of drops with finite-length tails is also studied. Finally, it is shown that

the main features of the bifurcation diagram are universal as they follow scaling laws over

several decades of the droplet size. The quantitative changes are condensed in the form of

scaling laws. Finally, we consider the total dissipation of the different droplet types and

analyze where dissipation is localized within the sliding droplets.

The paper is structured as follows. In Sec. II we present our model and discuss the

numerical approaches of time-stepping and path-continuation. The sub-sections of Sec. III

present our main results, first, in the form of the overall bifurcation diagram and, then,

detailing the behavior on the various found sub branches of stationary sliding drops. Sec. IV

analyses the dependence of main features on the droplet volume while Sec. V discusses the

velocity field and dissipation within the drops. The work concludes with a discussion in

Sec. VI.

II. MODELLING AND NUMERICAL APPROACH

A. Governing equation

We describe the dynamics of sliding drops using an asymptotic long-wave model, i.e., an

evolution equation for the film thickness profile. The model accounts for capillarity through a

Laplace pressure, wettability through a Derjaguin (or disjoining) pressure and the down-hill

component of gravitation as lateral driving force [12, 16, 26]. It is derived from the Navier-

Stokes equations using a long-wave approximation [26, 27] employing a no-slip boundary

condition at the smooth solid substrate and stress-free boundary conditions at the liquid-air

interface, i.e., the free surface of the film. This approach is valid in the case of thin liquid
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layers that have small surface slopes, i.e., for liquid films and drops that are described by a

height profile h(x, y, t) which only exhibits small gradients in the lateral directions. In other

words, the surface deflections are small (or the entire film is thin) relative to the lateral

dimensions of height modulations.

For a general lateral driving force χ(h), the non-dimensional evolution equation for the

film thickness profile reads:

∂th(x, y, t) = −∇ · [Q(h)∇ [−∆h(x, y, t) + Π(h)] + χ(h)] (1)

where Q(h) = h3 is the mobility function and Π(h) = −df(h)/dh is the Derjaguin pressure

modeling wettability, i.e., the effective interaction between the free surface of the film and

the substrate [28, 42]. The term ∆h represents the Laplace pressure due to curvature. We

employ the wetting potential f(h) = 1
5h5
− 1

2h2
that corresponds to a precursor film model, i.e.,

a macroscopic drop coexists at equilibrium with an thin adsorption layer of thickness hp = 1

determined by Π(hp) = 0 [30, 31]. Note that there are many other possible choices for the

wetting potential and resulting Derjaguin pressure. Another common ansatz employs, e.g.,

exponential functions [12, 32] or a combination of a power law and an exponential [43, 44],

however the resulting overall shape of Π(h) is rather similar. Instead of using a Derjaguin

pressure that ensures the existence of a wetting layer, other approaches are possible, such as

a slip-model that allows for a finite slip velocity of the liquid at the liquid-solid interface [45].

Although there exist quantitative differences to the model used here, time simulations show

qualitatively similar results for individual sliding drops (see, e.g., Ref. [33]). Furthermore

one can show that asymptotically these models are equivalent in describing moving contact

lines [46]. However, for the current work, a slip model is less suitable because additional

assumptions are needed to treat topological changes of drop solutions with compact support.

Such changes frequently occur during the studied pearling-coalescence cycles.

In the non dimensional form of the thin film equation in Eq. (1), all material parameters,

such as viscosity, surface tension, and Hamaker constant, are already absorbed into the scal-

ing of height, the coordinates, and time, resulting in the remaining dimensionless parameters

(as described in note [47]). For details of the used scaling, we refer to Refs. [12, 31, 48, 49].

Note that the scaling is chosen in such a way that each of the most important control pa-

rameters only enters the equation through one dimensionless parameter but is not contained

in the scales. Here, these is the inclination of the substrate and the volume of the drop.
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In the case of an inclined substrate, the influence of gravity is incorporated into the

driving force χ(h) through the scaled long-wave inclination angle α̃:

χ(h) = Q(h)G0 (α̃, 0)T . (2)

Here, G0 = 10−3 presents a dimensionless gravity parameter and the plane is tilted in the

x direction; i.e., there is no driving force in the y direction. For simplicity, we always use

α = G0α̃ as an effective inclination.

We note, that Eq. (1) with driving (2) may be expressed in the general variational form

of a gradient dynamics on a free energy functional F [h]. Namely,

∂th = ∇ ·
[
Q(h)∇δF [h]

δh

]
(3)

with

F [h] =

∫
Ω

[
1

2
(∇h)2 + f(h)

]
dx dy −

∫
Ω

hαx dx dy . (4)

The final term in F [h] corresponds to the lateral part of the potential energy. Note, that

(4) has no lower bound, as the global minimum is only reached if all the liquid volume

approaches x → ∞. Therefore, we have the interesting case of a system that remains out

of equilibrium forever, but is still described by a gradient dynamics that evolves towards an

energy minimum (it can be shown that F [h] is a Lyapunov functional). This dramatically

distinguishes the case treated here from the relaxational dynamics discussed in Refs. [31, 50]

where the system moves towards equilibrium and approaches it.

To investigate droplets that slide with a constant shape and velocity U , i.e., stationary

solutions of Eq. (1), the equation is transformed into a comoving frame x̃ = x − Ut and

the time derivative in the comoving frame is set to zero. Practically, this replaces the time

derivative in Eq. (1) by an advection term −(U, 0)T · ∇h. Dropping the tilde we obtain the

equation

0 = −∇ ·
[
Q(h)∇ [∆h(x, y, t) + Π(h)] + χ(h)− (U, 0)Th

]
(5)

that determines the stationary states h = h0(x, y). To determine their stability, we add

a small perturbation h1(x, y), i.e., use the ansatz h(x, y, t) = h0(x, y) + h1(x, y) exp(λt).

Introducing the ansatz into Eq. (1) and linearizing in h1 gives (in the comoving frame) the

linear eigenvalue problem

0 = (L[h0]− λ)h1 , (6)
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where λ and h1 represent the eigenvalue and eigenfunction, respectively. The linear operator

L[h0] is defined by

L[h0]h1 = −∇ ·
[
h1 3h2

0∇ [∆h0 + Π(h0)] + (3h2
0α− U, 0)Th1 + h3

0∇ [∆h1 + Π′(h0)h1]
]
.

The presented model has a variety of different solution types. A homogeneous film of any

height is always a (trivial) solution. However, for the employed Derjaguin pressure flat films

are unstable in most cases (linearly unstable for h > 21/3). Also, effectively one-dimensional

solutions are possible, such as transversally invariant ridges that slide down the incline.

Their cross sections in the x direction are one-dimensional sliding drops, i.e., h = h(x, t).

Another option are rivulets that represent free surface channels guiding the liquid downslope.

They have a cross section in the ydirection independent of x, i.e., h = h(y, t). Here, we

mainly analyze truly three-dimensional droplets, i.e., h = h(x, y, t), using both, continuation

techniques and direct numerical simulations, which are briefly described next.

B. Numerical approach

1. Time stepping

Direct numerical simulations of the model (1) are performed using a finite-element

method. The method is implemented through the open source framework dune-pdelab

[51–53]. We discretize the simulation domain Ω = [0, Lx]× [0, Ly] = [0, 200]× [0, 100] into an

equidistant mesh of Nx×Ny = 128×64 quadratic elements with linear (Q1) ansatz and test

functions. The time integration is conducted with an implicit second-order Runge-Kutta

scheme [54]. The resulting nonlinear problems are solved with a Newton method, using for

the linear problems a biconjugate-gradient-stabilized method (BiCGStab) with a symmetric

successive overrelaxation (SSOR) as preconditioner. To implement Eq. (1) using this ansatz,

we split the model into two equations second order in space:

∂th =−∇ · [Q(h)∇[w + Π(h)] + χ(h)] , (7)

w =∆h . (8)
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In a weak formulation for general test functions φh and φw the equations read

0 =−
∫

Ω

∂thφh dx dy +

∫
Ω

Q(h)∇(w + Π(h)) · ∇φh + χ(h) · ∇φh dx dy, (9)

0 =

∫
Ω

wφw +∇h · ∇φw dx dy. (10)

The boundary integrals occurring due to the performed partial integrations vanish due to

the used periodic boundary conditions. As initial conditions we use a parabolic cap of

prescribed volume V above the precursor layer. When the time-dependent behavior of

unstable solutions is studied, solutions obtained by continuation (Sec. II B 2) are used as

initial conditions.

To obtain the velocity of the sliding droplets, we track the position of maximal height over

time and differentiate numerically using fourth order finite differences. To better represent

the results in the forthcoming plots of height profiles, the x coordinate of the solutions

is shifted such that the maximum is always at the same position. This corresponds to a

transformation into the frame moving with the numerically determined droplet velocity.

2. Path-continuation

To analyze the model (1) with continuation methods [55, 56], i.e., to directly track so-

lutions in parameter space, we make use of the numerical pseudo-arclength continuation

package pde2path [40, 57] which is based on the finite-element methods of matlab’s

pdetoolbox.

Basically, path continuation determines steady states of an ordinary differential equation

(ODE) combining prediction steps where a known solution is advanced in parameter space

via a tangent predictor and correction steps where refined Newton procedures are employed

to converge to the new solution at a new value of the primary continuation parameter.

PDEs including boundary conditions and side conditions as, e.g., volume conservation can

always be approximated by an ODE system of large dimension. The primary continuation

parameter is in our case, e.g., the inclination α of the substrate in Eq. (1). Naturally the

continuation of sliding drops requires the use of the system in the comoving frame as given

by Eq. (5), implying that beside the primary continuation parameter also the velocity of the

frame has to be determined. In this way one may start at an analytically or numerically

given solution, continue it in parameter space and obtain a broad range of solution families
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including their bifurcations and accompanying changes in morphology [55, 56]. However,

it depends on the continuation package whether only time-independent solutions can be

continued or whether this is also possible for time-periodic states. As the latter is often not

the case, direct numerical simulations are needed to complete the bifurcation diagram of a

system.

In time simulations of (1), the volume is automatically conserved because the equation

has the form of a continuity equation, ∂th = −∇· j. To ensure conservation of volume while

following stationary solutions in parameter space via continuation, an additional integral

constraint on the solutions is needed (see below).

To increase computational efficiency, we exploit the symmetry of the drops perpendicular

to the inclination direction and only compute one half of the physical domain Ω = [0, Lx]×
[0, Ly] = [0, 200]× [0, 100], i.e., Ωnum = [0, Lx]× [0, Ly/2]. Ωnum is discretized on a grid with

Nx × Ny = 800 × 200 mesh points. As a result Neumann conditions are imposed on the

boundaries in the y direction, whereas periodic boundary conditions are imposed in the x

direction; i.e., we investigate periodic arrays of sliding drops.

Further, one needs an additional phase condition to break the translational invariance

in the x direction. The condition prevents the continuation algorithm to trivially follow

solutions along the translational degree of freedom. Volume is fixed during continuation by

adding a volume condition. The two conditions read∫
Ω

h ∂xhold dx dy = 0 and

∫
Ω

(h− hp) dx dy − V = 0, (11)

respectively. Here hold denotes the solution obtained in the previous continuation step.

Taking a single static drop with α = U = 0 as starting solution, we conduct an pseudo-

arclength continuation for increasing inclination angles α. The corresponding velocity U of

the comoving frame is used as an additional free parameter, as the drops slide with varying

velocities that depend on the inclination and are automatically adapted to the corresponding

α during continuation.

III. BIFURCATION DIAGRAM

At first, we give an overview of changes in the overall droplet behavior as the inclina-

tion angle is increased. The individual phenomena are further analyzed in the subsequent
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FIG. 1. The left panel shows the bifurcation diagram in terms of the dependence of the velocity U of

stationary sliding drops (solid and dashed lines) on inclination angle α at fixed volume V = 3.0×104.

The right panels show exemplary stationary drop profiles on a domain Ω = 200 × 100 from the

various sub-branches as indicated by roman numbers in the left panel. The arrows indicate the

sliding direction. Side-branch A consists of time-periodic solutions obtained by direct numerical

integration and is discussed below in Sec. III B, while snapshots of these solutions are shown in

Fig. 2. In the left panel, the time-averaged velocity of these solutions is shown. An animation

showing the changing shape of the stationary droplets as one travels along the bifurcation curve is

available as movie 01 in the Supplementary Material.

sections.

The bifurcation diagram shown in Fig. 1 summarizes all stationary droplet states obtained

by continuation. It presents the dependency of the velocity U on inclination angle α for

droplets of fixed volume V = 3 × 104. The main branch displayed by solid and dashed

lines represents the different stationary drops. The general form of the branch with its

prominent folds is universal over a wide range of drop volumes V (discussed in Section IV

below). Depending on the shape of the bifurcation curve and the linear stability of the
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individual solutions, we divide the branch into sub-branches consisting of drop profiles that

show common properties. Note that at this point, we discuss only the morphology and

overall behavior of the different droplet types. For a further analysis of the velocity field

and dissipation within the droplets see Sec. V.

From the main branch of stationary states, a side branch of pearling solutions bifurcates,

that represents the emission of small satellite drops from the larger sliding drops. Due to the

periodic boundary conditions in the direction of droplet motion, these solutions are time-

periodic in the comoving frame, which corresponds to the experimental setup in Ref. [3]

where a continuous sequence of identical drops slides down an incline. The distance between

the drops corresponds to the periodicity of the domain considered here.

Starting with a droplet at rest for a vanishing inclination (α = 0), the first part of the

curve U(α) (denoted in the following as sub-branch I ) exhibits a linear increase of velocity

with increasing inclination angle. The overall shape of the drop profile does not change

significantly (cf. Fig. 1, snapshot I; for details see Sec. III A). For a specific value of α = αSN1,

which depends on the drop volume, a saddle-node bifurcation (or fold) occurs where the

stable sub-branch I connects with a linearly unstable sub-branch II. The latter continues

towards smaller α; i.e., it coexists with sub-branch I for a range of inclination angles and

always exhibits smaller velocities. The shape of the droplets changes significantly along this

sub-branch, as a protrusion is formed at the rear of the drop (cf. Fig. 1, snapshot II) that is

the mesoscopic equivalent of cusps observed for macroscopic drops. This is further discussed

in Sec. III C. Near the saddle-node bifurcation, on sub-branch II also a global bifurcation

occurs, that is responsible for the pearling instability and the emission of small satellite

droplets. The resulting non-stationary solutions are time-periodic and show a repeated

breakup of the main drop into a large main droplet and a small satellite droplet and the

subsequent coalescence of the two. This type of behavior is determined by direct numerical

simulations and is denoted as side branch A. It is further analyzed in Sec. III B.

Following sub-branch II with decreasing α, at a lower inclination threshold α = αSN2, a

second saddle-node bifurcation occurs. There, a second real eigenvalue becomes positive.

Therefore beyond the fold, “sub-branch III” consists of doubly unstable drops and continues

towards larger α. The two real unstable eigenvalues approach each other, become identical

already slightly after the saddle-node bifurcation. Then they transform into a complex

conjugate pair. Beyond this point, time simulations that start with such unstable steady
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drops on sub-branch III show breathing-like oscillatory destabilization and then approach a

drop on the stable upper sub-branch I. Increasing the inclination angle further, the pair of

complex conjugate eigenvalues crosses the imaginary axis, i.e., a Hopf bifurcation occurs. At

this bifurcation, we expect a branch of time-periodic solutions to emerge, e.g., periodically

oscillating droplets. However, the employed continuation package is not yet able to follow

such a branch of time-periodic solutions. As our direct time simulations in this parameter

range did not show such solutions, we conjecture that the branch of time-periodic solutions is

a short (small α range) unstable branch that starts subcritically at the found Hopf bifurcation

and ends in a homoclinic bifurcation (as sometimes seen in related systems; see e.g. Ref. [58]).

Note, that this hypothetical short branch should not be confused with the aforementioned

side-branch A of periodic pearling and coalescence that emerges at a different homoclinic

bifurcation. Beyond the Hopf bifurcation, we are on sub-branch IV that is formed by

linearly stable droplets. The protrusion at the back of the droplets becomes even more

significant in this region as an elongated tail is formed whose length increases with increasing

inclination angle (cf. Fig. 1 snapshots III/IV). Note that depending on α this non-trivial

droplet solutions coexists with either the stable drops of sub-branch I or with the stable

time-periodic behavior on side-branch A. Increasing α even further, on branch IV the droplet

elongates until it forms a rivulet solution in the x direction (see Sec. III D for details). In

the next sections we further analyze the phenomena on the individual sub-branches.

A. Stable stationary sliding drops: Sub-branch I

First we give some more details on sub-branch I, i.e., the part of the bifurcation curve

in Fig. 1, that emerges from the origin. Due to the absence of substrate inhomogeneities or

other pinning mechanisms, a drop at rest begins to slide for arbitrarily small finite values

of α (cf. Refs. [48, 59] and the present case in comparison to Refs. [35, 37]). Inclining the

substrate further, the drop velocity increases linearly while the shape of the drop does not

vary significantly. The radially symmetric spherical cap shape at α = 0 becomes slightly

oval as the droplet prolongs a bit in the direction of the incline. Further, one can observe

that the x → −x symmetry is broken as the trailing back of the drop becomes a bit more

pointed than the advancing front (cf. Fig. 1, snapshot I). The value of the slope of the linear

dependence U(α) depends on the volume of the drop, and can be brought into the form
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of a simple power law. This is quantitatively analyzed below in Sec. IV. The final part of

sub-branch I at α & 1.5 × 10−3 deviates from the linear behavior towards lower velocities

until it becomes vertical where it ends in the first saddle node at αSN1 ≈ 1.85 × 10−3. In

this final part of the sub-branch the shape asymmetry of the droplets gets stronger. The

dependencies of the critical angle αSN1 and the velocity USN1 at the bifurcation on droplet

volume can also be brought into the form of power laws as discussed below in section IV.

B. Time-periodic behavior - Side branch A

As shown in the bifurcation diagram in Fig. 1, the sub-branch of stable sliding droplets

of weak deformation from the equilibrium spherical cap profiles ends in a saddle-node bi-

furcation at α = αSN1. At this bifurcation a single real eigenvalue becomes positive. The

corresponding eigenfunction and the stationary droplet profile close to the bifurcation are

shown in Fig. 2.

For inclination angles larger than αSN1, there exist no stationary sliding droplets with a

simple spherical-cap-like shape. Instead, one may find a periodic (or more involved) spatio-

temporal dynamics. The continuation package we employ is tailored to follow steady states

of elliptical problems and can therefore not be employed in the analysis of such a spatio-

temporal dynamics. To determine what type of time-varying behavior occurs for α > αSN1,

we use direct numerical simulations (DNS) of Eq. (1).

As initial condition for the DNS, we use the stable solutions on sub-branch I below but

close to αSN1, and increase the inclination angle to an α > αSN1 above the critical one.

It turns out that the unstable eigenfunction shown in the bottom left panel of Fig. 2 also

corresponds to the dominant mode of evolution. It results in a pearling behavior: The large

main drop ejects from its pointed backside satellite droplets of considerably smaller volume

than its own. As the smaller drop moves more slowly than the larger one, the distance

between them continuously increases. Due to the periodic boundary conditions in the x

direction, after a certain time period Tper the small drop is absorbed again by the main

drop. The resulting merged drop is then again unstable and emits another satellite droplet;

i.e., the behavior corresponds to a limit cycle solution. At first view, this periodic behavior

might seem artificial as it is induced by the periodic boundary conditions. However, these

conditions are appropriate also for the real experimental system [3] where one periodically
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FIG. 2. Stationary sliding droplet (top left panel) and eigenfunction of marginally stable pertur-

bation mode (bottom left panel) at the first saddle-node bifurcation (α = αSN1 ≈ 1.85× 10−3) in

the bifurcation diagram, Fig. 1. The panels on the right show snapshots of the time evolution for

an inclination angle α = 1.96 × 10−3 slightly above the saddle-node bifurcation. A video of this

simulation is available as movie 02 in the Supplementary Material.

places identical drops at the top end of an inclined plate. A constant frequency is obtained by

continuously dripping liquid from a nozzle. This frequency ω, in combination with the mean

sliding velocity of the drop v̄, directly translates to a spatial periodicity ω−1v̄ corresponding

to the size Lx of our spatial domain with periodic boundary conditions. The experimental

dripping frequency therefore scales as L−1
x for large domain sizes. Then, the duration of

the droplets interaction becomes negligible compared to the time interval in which the two

individual drops freely slide without interaction.

To be able to include the branch of these time-periodic solutions into the same bifurcation

diagram in (Fig. 1) that shows the stationary sliding drops, we compute the velocity of the

larger drop averaged over ten periods Tper, for which we track the position of maximal drop

height over time and differentiate it numerically. Figure 3 shows that the droplet velocity

greatly varies over the course of one time-period because the point of maximal height moves

faster for the fused drop than for the split drops. The position of the maximum moves even

faster during the coalescence process. The temporal average of this velocity also depends
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FIG. 3. Velocity of the maximum of the larger drop during the pearling process with time period

T ≈ 7780. The time t corresponds to the time displayed in the snapshots of Fig. 2. The large

peak in the middle occurs during the coalescence process, where the larger drop quickly invades

the smaller one. Shortly after this, at t ≈ 7000, the drop has gained a maximal compact shape,

where it slides fastest. During the following elongation and formation of the tail, it slows down

until the pearling occurs at t ≈ 3000. The two resulting drops then relax again to a more compact

shape, resulting in a increase of sliding velocity around t ≈ 4000.

on the spatial domain size that is considered, because for a larger domain size, after the

pearling it takes longer for the larger drop to catch up with the satellite drop. As for the

separated drops the velocity is smaller than during the coalesced phase and a larger domain

size results in a smaller average velocity.

Figure 4 shows how the time-period Tper of the pearling-coalescence cycle depends on the

inclination angle (for a fixed domain size). From the bifurcation point at αbif the period

is quickly decreasing with increasing angle with a logarithmic scaling Tper ∼ −ln(α − αbif),

which is typical for an onset of a periodic cycle via a homoclinic bifurcation [60]. This

hypothesis is also supported by the fact that there exists some hysteresis, i.e., in a small

interval of inclination angles αbif < α < αSN1 both, the time-periodic solutions and the

stationary drops of sub-branch I are stable (see also Fig. 7 below). This zoom also clarifies

that the time-periodic branch ends on sub-branch II of unstable droplets as expected for a

homoclinic bifurcation.

For larger inclination angles α & 2.1 × 10−3, the time-period Tper increases again. Also

the standard deviation starts to increase (Fig. 4). This indicates that the period of the
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FIG. 4. Time period of the pearling-coalescence cycle in dependence of the inclination angle α. The

period is averaged over 10 cycles and the resulting standard deviation is indicated as error bars.

Towards the onset of pearling at lower α, the period scales as Tper ∼ −ln(α − αbif), as indicated

by the gray fit line. After the first period doubling at α ≈ 2.15 × 10−3, the standard deviation

increases significantly, indicated by the error bars. The remaining parameters are as in Fig. 1.

subsequent pearling-coalescence cycles is not identical anymore, but begins to vary. In fact,

from α ≈ 2.15× 10−3 period doublings occur: First, the period begins to alternate between

two different values but for larger α more periods occur.

This period doubling can best be illustrated by studying the volumes of all drops after

pearling, i.e., in the split-up state. To determine the volume of the drops, we identify

connected areas in the simulation domain, that are elevated above a certain threshold height

hthreshold = 1.05 and integrate over this subdomain:

Vdrop =

∫
Ωdrop

(h− hthreshold) dx dy (12)

The threshold height is subtracted in the integration to ensure that drops of identical real

volume, i.e., volume above the adsorption layer, but different base area give the same value

of Vdrop. Although this results in a slight systematic underestimation of drop volumes, the

effect is negligible as we do not quantitatively compare to other methods.

The bottom panel of Fig. 5 shows the time series of all drop volumes in a simulation for
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FIG. 5. Bottom panel: time series of all droplet volumes present in a simulation of a pearling drop

for α = 2.2× 10−3. Fused states at large volume alternate with split-up states of smaller volumes,

indicated by the repeated alternation between time intervals with one or two drop sizes. Two

subsequent split-up states exhibit different drop volumes, while the fused states have all identical

volumes, which is a sign of a period doubling. The dashed lines mark the particular times that

correspond to the exemplary solution snapshots in the top panel. The small drop in the third

snapshot (at t = 1.8 × 104) has a larger volume than the smaller drop at t = 1.0 × 104. The red

bars at the right hand end of the bottom panel summarize all drop volumes that occur during the

entire simulation.

α = 2.2×10−3. The repeated break up and coalescence is visible as alternating time intervals

with one and two concurrent volumes. Two successive split-up states, e.g., at t = 1.0× 104

and t = 1.8 × 104 exhibit different but alternating volumes. This alternation between

two different split-up states indicates a period doubling of the pearling-coalescence cycle.

Combining all occurring drop volumes of such a simulation (see the short red horizontal bars

at the right edge of Fig. 5), one can classify whether the simulation shows a simple time-

periodic state, a period-doubled state or states with more complicated time dependencies.

Figure 6 shows all these occurring volumes of the respective larger drop for different

inclination angles, i.e., at α = 2.2× 10−3 in Fig. 6 the shown values correspond to the upper

three symbols on the right border of Fig. 5. The period doubling is visible as the transition
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FIG. 6. Volumes of all the largest drops that occur in the course of a time simulation at fixed

inclination angle α are plotted as a function of α, e.g., for α = 2.2× 10−3 points mark the values

indicated by the red bars at the right hand end of the bottom panel of Fig. 5.

at α ≈ 2.15 × 10−3 from two to three occurring values for the volume, i.e., there is always

one value corresponding to the volume of the coalesced drop and there are one and two

values of split drops before and after the period doubling, respectively. Further increasing

the inclination angle, at α ≈ 2.25 × 10−3 another period doubling occurs, where the two

volumes that occur after pearling again each split up into two slightly different values. The

resulting time-periodic state corresponds to a period-4 cycle. These two period doublings are

the beginning of the classical period doubling route to chaos [60]. The resulting completely

irregular behavior can be seen for values such as α ≈ 2.35 × 10−3, where a whole range

of volumes occurs in the course of one simulation. Typical for this route to chaos is the

emergence of periodic windows; i.e., by increasing the inclination angle from a value that

shows irregular behavior, one again finds periodic cycles. In this case, they can also represent

a situation where after pearling the larger drop is still unstable and emits a second satellite

drop before it merges with the first satellite drop again. Therefore there exist time spans

during a cycle with three distinct drops.

For inclination angles above α ≈ 2.9× 10−3, the drops become long enough to span the

whole domain; i.e., they form rivulets and then no pearling or coalescence occurs. But still,
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these rivulets can exhibit a time-periodic behavior, e.g., its local height varies along its length

and these surface-wave-like modulations travel downward. Further details of the behavior

of the rivulets are not in our present scope. Note that the inclination at which the domain-

spanning rivulets form depends, of course, on domain size. Another option that we do not

pursue here further, is to consider not one drop on a domain of length Lx, but two identical

drops on a domain of size 2Lx. They may show a different pearling behavior, because the

volume conservation now holds for the two drops and their satellite drops together and not

individually for each drop and its own satellite drop. Therefore also other time-periodic

behaviors are possible, like two drops that share one satellite drop.

C. Unstable stationary solutions: Sub-branches II and III
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FIG. 7. Closeup of Fig. 1 focusing on the monotonously linearly unstable sub-branch II and the

oscillatory linearly unstable sub-branch III, parts of the neighboring sub-branches I and IV and

the beginning of side-branch A. The arrows indicate the dynamics that occurs when unstable drops

on sub-branches II and III are disturbed. Normally, they all relax to the stable sub-branch I (cf.

Fig. 9).
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Next we give some more details on sub-branch II, i.e., the part of the bifurcation curve in

Fig. 1 that connects the first two saddle-node bifurcations. We start at the first saddle-node

bifurcation at αSN1 and follow sub-branch II with decreasing inclination angle; cf. Fig. 7

for a zoom of the bifurcation diagram in this region. One clearly sees that side branch A

(discussed in Sec. III B) emerges from sub-branch II at an α that is slightly smaller than

αSN1. This point corresponds to the homoclinic bifurcation discussed in Sec. III B. All

solutions on sub-branch II are linearly unstable drop solutions that along the branch undergo

a morphological change. Namely they develop a protrusion at their back which increases

in length with decreasing α. This is shown in the snapshots III and IV in Fig. 1. When

performing time simulations using these drops as initial conditions, their instability always

leads to a dynamical change of the drop shape and velocity. Normally, the protrusion at

the end of the drop shrinks until the drop has the shape of the oval drop on the stable sub-

branch I at identical α. Alternatively, the drop may undergo a single pearling-coalescence

cycle before approaching sub-branch I.
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FIG. 8. The two leading eigenvalues of stationary drop solutions in the region close to the second

saddle-node bifurcation connecting sub-branches II and III and the Hopf bifurcation where sub-

branch IV starts. For details see main text.

At the inclination αSN2 ≈ 1.266× 10−3, a second saddle-node bifurcation occurs in which

one could expect the unstable eigenvalue to become stable again. This is, however, not the
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case illustrated in Fig. 8 that gives the leading two eigenvalues along sub-branches II, III,

and IV close to αSN2. One notices that when decreasing α on sub-branch II close to αSN2,

the magnitude of the first unstable eigenvalue (black solid line) decreases. At the bifurcation

at αSN2 where sub-branch III begins (dashed lines) another real eigenvalue (gray solid line)

destabilizes. The two real positive eigenvalues meet at α = 1.269×10−3 on the real axis and

separate again to form a complex conjugate pair (the black dashed line shows its real part;

the imaginary part is shown as the gray dashed line). By increasing α further, the unstable

pair crosses the imaginary axis, i.e., it stabilizes in a Hopf bifurcation at αhopf = 1.392×10−3.

There the stable sub-branch IV starts.
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FIG. 9. Left panel: Drop profile (top), real (middle), and imaginary (bottom) parts of the complex

unstable eigenfunction on sub-branch III at α = 1.35 × 10−3. Right panel: Time evolution of the

droplet in the top left panel. Note the contour lines on the tail of the drop, where a tail oscillation

can be observed in the repeated swelling and shrinking. A video of this simulation is available as

movie 03 of the Supplementary Material.

Where the leading eigenvalue is complex, the destabilization dynamics of the unstable

drops on sub-branch III is oscillatory, and it exhibits an oscillatory breathing-like behavior

of increasing amplitude. Figure 9 illustrates this time evolution as well as the corresponding

unstable eigenmode. In the course of the time evolution, the tail of the drop oscillates with

an increasing amplitude. When a certain amplitude is reached, the tail gets either absorbed
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into the main part of the drop, or the tail pinches off as a satellite drop and coalesces with

the main drop after one revolution in the periodic domain. In both cases, the final state

is a stable solution at identical α on the stable sub-branch I. This oscillatory behavior is

well illustrated in Fig. 10, which shows the dependence of drop height and drop velocity on

time. After a phase of about two periods (t ≈ 50000) during which a harmonic oscillation

grows, the evolution becomes clearly non linear, i.e., non harmonic. After one more period

the drop closely approaches the shape and velocity of a drop on the stable sub-branch I.
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FIG. 10. Dependence of drop height (dashed line) and drop velocity (heavy solid line) on time

for the unstable oscillatory evolution illustrated by the snapshots in Fig. 9. The velocity of the

drop oscillates with increasing amplitude around the velocity of the unstable stationary drop from

sub-branch III that provided the initial condition (indicated by the thin dotted horizontal line)

until the deformation of the drop is large enough to relax to a drop on sub-branch I (velocity

indicated by the thin solid horizontal line).

D. Stationary stable solutions: Sub-branch IV

Having discussed the unstable sub-branches II and III, we move on to the linearly stable

sub-branch IV that starts at the Hopf bifurcation and continues towards larger α; cf. Figs. 1

and 7. We are not able to discuss the branch of time-periodic solutions that has to emerge



24

from the Hopf point. As time simulations around αhopf do not show any sign of stable time-

periodic solutions we assume that the branch bifurcates subcritically. The structure of the

eigenvalues shown in Fig. 8 makes it most likely that the branch ends nearby in a homoclinic

bifurcation on the unstable sub-branch II.

The linearly stable solutions on sub-branch IV all represent drops with extended protru-

sions at their rear end and exist in an extended parameter range. As α is increased, the tail

gets longer, while the main body of the drop shrinks due to volume conservation [cf. sta-

tionary drops in Figs. 11(a) and 11(b)]. Note that the existence of this branch of stable

non trivial droplets implies that the system shows multistability: The non trivial drops are

linearly stable at parameter values where other stable solutions exist: either the oval drops

on sub-branch I or the pearling-coalescence cycles on side-branch A.

At a certain inclination threshold, the drop length reaches the physical domain size,

i.e., its front and back interact [cf. Fig. 11(c)]. This results in a number of saddle-node

bifurcations as shown in the bifurcation diagram in the left panel of Fig. 11. However, here

only the first of these at α ≈ 3.5× 10−3 is of interest as it marks the end of sub-branch IV.

The part beyond (sub-branch V, dashed line in Fig. 11) is unstable and non generic as

its particular location depends of course on the chosen domain size. The interaction and

subsequent fusion of drop front and back results in a rivulet solution that is first modulated

but becomes translationary invariant in the x direction [cf. Fig. 11(d)] in the final bifurcation

(filled circle in Fig. 11) that corresponds to a Hopf bifurcation. Note that for a perfect rivulet

no velocity can be defined, therefore the dotted line in Fig. 11 represents the velocity of small

traveling modulations on the rivulet that are picked up by the numerical continuation.

For larger domain sizes, one needs to go to a larger inclination angle to sufficiently

lengthen a drop such that it spans the whole domain and becomes a rivulet. Therefore,

solutions as in Fig. 11(c) would occur for larger inclination angles. This would extend the

bifurcation diagram towards larger inclination angles.

IV. DEPENDENCE ON DROP VOLUME: SCALING LAWS

This section focuses on the power laws that have been mentioned in the previous sections.

Quantifying these power laws allows us to generalize our observations (that are up to here

mainly obtained for a single drop volume) to a broad range of drop volumes. Figure 12 shows
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FIG. 11. (left) Extension of the bifurcation diagram in Fig. 1 towards larger inclination angles.

Along the stable sub-branch IV, a shoulder occurs at α ≈ 2.4 × 10−3, where the tail of the drop

develops another bulge. The drop further elongates, until it spans the whole domain and becomes

a translation-invariant rivulet. Panels (a) to (d) give stationary drop profiles at inclinations as

indicated in the left panel.

bifurcation diagrams of stationary drops for several different drop volumes V . It shows that

its overall appearance does not change over the considered range of drop volumes.

The first part, sub-branch I (as discussed in Sec. III A), shows an increasing initial slope as

the volume increases. This corresponds to the fact that larger spherical or oval drops slide

with higher velocities because the gravitational pulling increases more strongly than the

viscous friction (also see Ref. [18]). Fitting the linear parts for all analyzed drop volumes V

reveals how the slope U/α depends on V . These slopes are shown in Fig. 13(a) for a volume

range of about three orders of magnitude. Using a power law ansatz for this dependency we
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FIG. 12. Shown are bifurcation diagrams (drop velocity over inclination angle) for several different

drop volumes V as indicated in the legend. The bifurcation diagram maintains its appearance over

the considered range of V . With increasing drop size, all characteristic points are shifted towards

smaller inclinations (dotted line → dashed line → solid line). Note that the drop volumes shown

here are substantially larger than the case V = 3× 104 discussed in the previous sections.

obtain (
U

α

)
lin

= a0V
β0 with β0 = 0.569± 0.005 (13)

and a0 = (2.2± 0.2)× 10−4 ;

i.e., the exponent β0 is larger than 1/2 and smaller than 2/3. This can be understood

from a simple consideration: The velocity U of the sliding drop results from a force balance

between gravitational pulling and the viscous friction force. The gravitational force FG is

proportional to the inclination angle and the volume of the drop, FG ∼ αV . For the friction

force FF one may discuss two limiting cases: It might either be proportional to the size of

the footprint of the drop or to the length of the contact line. In the former case, one expects

FF ∼ V 2/3U , in the latter case FF ∼ V 1/3U . Assuming the force balance FG = FF holds,

one will obtain either
(
U
α

)
lin
∼ V 1−2/3 = V 1/3 or

(
U
α

)
lin
∼ V 1−1/3 = V 2/3. The numerically

obtained exponent β0 ≈ 0.569 is closer to 2/3 than to 1/3. This indicates that the viscous

friction is mostly localized close to the contact line and is less related to the footprint of the
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FIG. 13. Panel (a) shows the dependence of the slope U/α of the linear part of sub-branch I in

the bifurcation diagram on the drop volume V , while panel (b) shows the location of the first

saddle-node bifurcation in dependence on V . Note that the smallest drop at V = 3×103 is missing

in panel (b), since the corresponding bifurcation does not exist below a certain volume. Using

the power law for the first saddle-node bifurcation to normalize the bifurcation curves at different

volume, all graphs collapse onto one master curve, as shown in panel (c) with a closeup in panel

(d). This shows the morphological stability of the bifurcation diagrams. Note that the range of

drop volumes covered here is much larger than the one shown in Fig. 12; therefore the underlying

power law is valid for at least three orders of magnitude.

drop. This is further discussed in Sec. V below, where we analyze the spatial distribution of

the viscous dissipation within the drops.

The next power law gives the dependence of the angle of the first saddle node bifurcation

αSN1 on drop volume V [cf. Fig. 13(b)]:

αSN1 = a1V
β1 with β1 = −0.713± 0.005 (14)

and a1 = (2.9± 0.1)× 103 .
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This locus nearly coincides with the angle at which the pearling sets in (see discussion of

details in Sec. III B). Studying the dependence of the corresponding velocity USN1 at this

bifurcation on V reveals a slightly more complicated power law shown in Fig. 13(b) that

includes an offset:

USN1 = a2V
β2 + c2 with β2 = −0.26± 0.02 , (15)

a2 = 1.5± 0.1

and c2 = (3.8± 0.2)× 10−2 .

On the one hand, the relations Eqs. (14) and (15) allow one to specify the angle up to

which a sliding drop with given volume is stable with respect to pearling. On the other

hand, fixing the angle and analyzing drops or drop ensembles with different volumes one

can predict which drops are stable or unstable. In addition, the powerlaws can be used to

rescale the bifurcations diagrams for different volumes. As can be seen in Figs. 13(c) and

13(d), the diagrams then almost perfectly collapse onto one single master curve, indicating

that the morphology of the bifurcation diagram is stable over many decades of drop volumes.

V. ENERGY DISSIPATION IN A SLIDING DROP

Finally, we investigate how the dissipation mechanisms differ for the various described

stationary sliding drops. We determine the local and total dissipation for stationary sliding

drops based on the dissipation per volume that is in long-wave approximation given by

η[∂zv(z)]2 where v = (u, v)T is the two-dimensional vector of the velocity components in

the substrate plane. It depends explicitly on the coordinate z; dependencies on the other

coordinates are implicit through its dependence on the height profile h(x, y). Employing the

no-slip condition at the substrate and force-free conditions at the free surface, in long-wave

approximation the x and ycomponents of the velocity field in the laboratory frame are given

by the parabolic profile [26]

v(z) = −3
[
∇ [∆h+ Π(h)] + (α, 0)T

] [z2

2
− hz

]
. (16)

Deriving the z component by employing the continuity equation, it is possible to extract the

full 3d velocity field from the 2d height profile. Here, in Fig. 14 the result is presented for two

stable drops of different types in the frame moving with the drop. Given are mean velocity
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fields projected onto certain planes, where we average by integrating over the respective

spatial dimension orthogonal to the presentation plane and then pointwise normalizing by

the local extent of the drop in this orthogonal direction.
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FIG. 14. Mean velocity fields in the co-moving frame (determined as described in main text)

within particular (left panels) oval cap-like and (right panels) elongated sliding drops representing

the stable solution branches I and IV, respectively, in Fig. 1. For both profiles the top, middle,

and bottom rows present the top view (x-y plane, averaged across the z direction), side view (x-z

plane, averaged across the y direction), and the back-front view (y-z plane, averaged across the x

direction), respectively. The colors indicate the absolute value of the respective mean velocity.

Figure 14 shows that the velocity of the wetting layer is in the negative x direction and

large as compared to the velocity within the drop. This is expected, as it is nearly at rest in

the laboratory frame. In consequence, the flow very close to the substrate is laminar within

both drops. For the simple oval sliding drop corresponding to solution I in Fig. 1 (see also
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Fig. 15 below), two rolls symmetrical with regard to the reflection in the y direction fill

the upper part of the drop (left column in Fig. 14). For elongated drops (right column in

Fig. 14), these roll structures split up in the sliding direction, resulting in another pair of

rolls within the rear protrusion.
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FIG. 15. Relative total dissipation D̄rel is given as a function of α for all branches described in

Sec. III. The panels on the right hand side show the local per-substrate-area dissipation D(x, y)

corresponding to the stationary droplet profiles shown on the right hand side of Fig. 1. The values

for the time-periodic solutions obtained by DNS are time-averaged and are therefore only reliable

below the onset of the period doubling cascade at αPD ≈ 2.15× 10−3. For the given drop volume

the relative dissipation reads D̄rel[h] ≈ D̄[h]− 69.13α2.

We now turn to a discussion of the dissipation inside the drop, where the local per-

substrate-area dissipation in long-wave approximation is obtained by integration across the

film height. In dimensionless form it is

D(x, y, t) =

∫ h(x,y,t)

0

1

3
[∂zv(z)]2 dz (17)

= h3
[
∇ [∆h+ Π(h)] + (α, 0)T

]2
, (18)
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which is equivalent to

D(x, y, t) = Q(h)

(
∇δF [h]

δh

)2

. (19)

Note that the factor 1/3 in the dissipation corresponds to a factor of 1/3, which we absorbed

into the scaling of the mobility. The total dissipation is then given by

D̄(t) =

∫
Ω

D(x, y, t) dx dy . (20)

We use the x-translation invariant rivulet hr(y) as reference state. It exists for any inclina-

tion and is approached by the studied drop solutions at large inclination angles (cf. Sec. III D,

Fig. 11). Writing the total dissipation as a functional D̄[h] we have for the relative total

dissipation

D̄rel[h] = D̄[h]− D̄[hr] (21)

with D̄[hr] = α2Lx

∫
Ω

h3
r dy , (22)

where we have used that for such rivulets there are no lateral mean flows, i.e., ∂yyyh +

∂yΠ(h) = 0. Note that the reference state is mainly subtracted to ensure readability of the

graphical representation. The relative dissipation for droplets on the main branch of Fig. 1

is given as solid and dashed lines in Fig. 15. On sub-branch I the relative total dissipation

monotonously increases with increasing α. Beyond the first saddle-node bifurcation at αSN1,

the dissipation D̄rel decreases along the unstable sub-branch II (with decreasing α). Beyond

the second saddle-node bifurcation at αSN2 the dissipation first increases again with increas-

ing α along sub-branches III and IV. It reaches a local maximum at about α ≈ 2.2 × 10−3

before decreasing towards the reference rivulet state.

The spatial distribution of the dissipation within the oval sliding droplets on sub-branch I

is significantly stronger close to the advancing and receding parts of the moving contact line

as compared to the central part of the footprint or, indeed, the lateral parts of the contact

line. This contrast gets even stronger with increasing droplet volume; cf. Fig. 16. This

observation does well agree with the numerically obtained power law Eq. (13) as we could

rationalize it using a simple friction force ansatz [Eq. (13)] if friction at the contact line

dominates (see Sec. IV). Similar results for the dissipation are obtained in Ref. [7], where

the dissipation for employed drop shapes and sizes is also assumed to be dominated by

viscous effects located at the contact line. Dissipation in 2d spherical cap-like droplets,
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FIG. 16. Comparison of the local dissipation of a relatively small drop to a drop of about 10

times larger volume. Both solutions correspond to the region of sub-branch I near the first saddle-

node bifurcation. The aspect ratio in the plane is equal in both plots whereas the dissipation

is normalized to its respective maximum value of Dmax ≈ 3.1 × 10−3 for the small drop and

Dmax ≈ 1.4 × 10−3 for the large drop. The local dissipation, i.e., inner velocity gradients, are

therefore larger for smaller drop volumes.

i.e., ridges with imposed cylinder symmetry are studied in Ref. [61]. They also find that

dissipation at the contact lines dominates.

Interestingly, the dissipation pattern is quite different in the second type of stable sliding

drops, i.e., the droplets with elongated tails on sub-branch IV. They show some dissipation

at the leading part of the moving contact line, however, most of the dissipation is localized

at the center of the tail along its entire length. The absolute value of the total relative

dissipation is at identical α always larger for the droplets on sub-branch I than those on sub-

branch IV. The time-averaged dissipation for the time-periodic pearling-coalescence cycles

on side branch A lies always between the values for sub-branches I and IV.
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VI. DISCUSSION

In this work we have presented a theoretical investigation of the bifurcation structure of

three-dimensional sliding droplets on a smooth homogeneous inclined substrate. Focusing on

small inclination angles and small contact angles and free surface slopes, we have employed an

asymptotic long-wave evolution equation for the film thickness profile h(x, y, t) that accounts

for capillarity and wettability through Laplace and Derjaguin pressure terms. The latter

consists of antagonistic power laws, ensuring that at equilibrium drops of finite equilibrium

contact angle coexist with a thin adsorption layer (sometimes called a precursor film). The

driving by gravity has been incorporated through an additional lateral force term. We have

analyzed the model with both a numerical path-continuation technique and direct numerical

simulations. The former has allowed us to determine stable and unstable stationary sliding

droplets of various kinds as summarized in a comprehensive bifurcation diagram, while the

latter has allowed us to determine time-periodic pearling-coalescence cycles of droplets and,

in general, to determine the dynamic evolution of the unstable solution types.

The bifurcation diagram has been presented in the form of a dependence of the velocity

of sliding drops on inclination angle. It shows which droplet types exist at which parameter

values, how the various sub-branches are connected, and where stabilities change at the

various bifurcations. Overlaps of linearly stable sub-branches indicate multistability, e.g.,

between simple stable oval sliding drops and stable sliding drops with a prolonged tail.

The different sub-branches are connected by saddle-node and Hopf bifurcations that are

responsible for the change in stability along the branch.

Interestingly, the side branch of time-periodic pearling-coalescence cycles does not emerge

at one of these local bifurcations but emerges from an intermediate point on an unstable

sub-branch in a global homoclinic bifurcation, i.e., without change of linear stability. The

behavior on this sub-branch has been found to correspond to interesting dynamics: first, a

repeated cycle of splits into separate drops and their subsequent coalescence. For increasing

α, these cycles undergo a cascade of period doublings resulting in irregular behavior at larger

angles. This closely resembles the behavior found for dripping faucets in dependence of the

flow rate [62]. One may even argue that our transition between individual oval drops to

the stable drops with prolonged tails bears a passing resemblance to the dripping-jetting

transition observed for a dripping faucet [63].
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We have generalized our results by studying the influence of the droplet volume on the

encountered transitions in behavior. We have found that the general appearance of the

bifurcation diagram is universal over several orders of magnitude in volume (also cf. note

[64]). Main features, such as, the volume-dependence of the slope of the linear relation of

sliding velocity and inclination angle for simple oval droplets and the dependence of the

locus of the first two saddle-node bifurcations can be brought into the forms of power laws.

In fact, these power laws are similar to experiment results in Refs. [3, 7–9]. Here, we found

the same functional dependency on the drop volume with an exponent of about 0.57 whereas

the results in the references conclude an exponent of 2/3.

The time evolution of the droplets in the pearling-coalescence regime can be well com-

pared to earlier numerical approaches to similar models. Reference [16] presented a number

of time simulations also using a precursor film model based on a disjoining pressure combin-

ing two power laws. They described the transition to pearling when increasing the driving

force and mentioned that a large droplet may decay into an almost chaotic pattern. Ref-

erence [65] explored the influence of the precursor height, mesh resolution, and numerical

accuracy on the morphologies. Shapes of sliding droplets are also investigated in Ref. [33]

employing a slip model and studying droplets of finite support; this allows these authors to

observe a spectrum of droplet shapes from ovals to drops with monotonic or non monotonic

tails; however, the pearling itself can not be observed. Our results significantly add to these

partial pictures by providing the entire bifurcation structure, including stable and unstable

droplets and their transitions. Numerical and analytical approaches focusing on the cusp

formation [9, 14] also obtain a universal dependence of the sliding velocity on the inclina-

tion angle when staying below the pearling instability. However, asymptotic approaches to

the cusp properties do not allow for the identification and further analysis of the pearling

instability as a bifurcation, which is what we have presented here.

Another important aspect is our analysis of local and global dissipation in the sliding

drops. Calculating the dissipation by inner velocity gradients of the drop we have found

that for the simple oval drops the dissipation is localized in the vicinity of the advancing

and receding parts of the moving contact line of the drop. The first power law with a rather

simple friction ansatz for a sliding spherical cap suggests the the friction is localized at the

edge of the cap, in total agreement with the spatial distribution of the dissipation as it

results from internal friction. Interestingly, the dissipation pattern is quite different in the
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droplets with elongated tails, where it is localized at the center of the tail along its entire

length.

A possible future extension of our present analysis could be a consideration of inho-

mogeneities, e.g., substrates with regular or random modulations of their topographical or

chemical properties. Such systems have already attracted much experimental [39, 66] and

theoretical [25, 35, 37] interest that highlighted interesting phenomena, especially concerning

the pinning of sliding drops on heterogeneities. As the multiplicity of steady and traveling

states is much larger on heterogeneous substrates, further effort is needed to understand

the various competing influences. Advancing towards real-world applications, such as the

movement of water with pesticides on plant leaves [67, 68], such considerations are obviously

necessary.

Another important future step in the theoretical analysis of sliding drops is the analysis

of large scale dynamics, i.e., the time evolution of large ensembles of droplets where splitting

and coalescence events continuously occur. Interestingly, the here-discussed power law for

the onset of pearling not only provides the critical inclination angle at fixed drop volume

but also a critical volume at a fixed angle. In this way, it should be possible to employ

the information from our single-drop bifurcation study to predict the behavior of ensembles

of interacting drops of various volumes. Such a connection of small-scale and large-scale

analysis will be pursued elsewhere.

Finally, we emphasize that the approach pursued here of combining path-continuation

and direct time-simulation to establish the bifurcation structure for sliding drops on a two-

dimensional substrate that is described by a thin-film equation is equally well suited to

closely related equations. Examples are (i) the convective Cahn-Hilliard equation describing

phase decomposition under the additional influence of an external lateral driving force or

faceting dynamics of growing crystals [69] and (ii) the Kuramoto-Sivashinsky equation whose

variants describe surface waves and deposition patterns [70, 71]. We are not aware of any

path-continuation study that would elucidate the bifurcation structure of their fully two-

dimensional solutions.
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